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            0 

 I appreciate very much my having the opportunity of speaking before you on 

some of the modern results in the foundations of math. and I hope I shall succeed in 

making leading ideas clear to you, despite the very technical character of the work. 

 The subject I want to talk about is closely connected with the so-called 

formalisation of math.  

            1 

 The modern investigations in the foundations of math. gave as one of the 

outstanding results the fact, that all math. and logic (at least all the math. that has been 

developed so far) can be deduced by means of a few axioms and rules of inference. 

 In order to bring out this fact clearly it was necessary at first to replace the 

imprecise and often ambiguous colloquial language (in which math. statements are 

usually expressed) by a perfectly precise artificial language the logistic formalism. This 

formalism consists of a few prim[itive] symb[ols] which represent the prim[itive] 

notions of log. and math. and play the same role as the words in ordinary language. I 

wrote some examples of the primitive symbols on the blackboard. Now any log. or 

math. prop[erty] can be expressed by a formula composed of these prim. symbols and 

vice versa any formula composed of our  
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prim. terms according to certain rules (which constitute the grammar of our log. 

language) expresses a definite mathematical statement. In practice it would be very 

incon[venient] to expr[ess] math. statements in this way by means of the prim. terms of . 

. . i.e. our formulas would become very long and cumbersome. Therefore besides our 

prim. terms new symbols are introduced by def[inition] but it is to be noted that this 

device serves merely the practical purpose of abbrev. and therefore it is entirely 

dispensable from the theor. p. o. view since one can replace in every formula the new 

symbols by their meaning expr. in the prim. terms. So we may disregard the possibility 

of introducing new symbols by def. and think of any mathematical statement as 

expressed by our prim. terms alone. 

 The process of deduction, i.e. of proof is represented in our formalism in the  
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following manner: Some of our formulas are considered as axioms, i.e. as the starting 

point for devel[oping] math, and in addition to that certain rules of inf[erence] are 

stated which allow one to pass from the axioms to new formulas and thus ded[uce] 

more prop[ositions]. One of the rules of inf. e.g. reads If A and B are two arbitrary 

formulas and if you have proved the formula A and A→B you are entitled to conclude 

B. The other rules of inf. are of a similar simple character. In practice all of them are 

purely formal, i.e. they do not refer to the meaning of the formulas but only to their 

outward structure and so they could be applied by someone who knew nothing about 

the meaning of the symbols. One could even easily devise a machine which would give 

you as many correct consequences of the axioms as you like, the only trouble  
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would be that it . . . at random and therefore not the results one is interested in. By 

iterated application of the rules of inf. starting from the axioms we obtain what I call a 

chain of inference. A ch. of inf. is simply a finite sequence of formulas A1 . . . An which 

begins with some of our axioms and has the prop[erty] that each of its other formulas 

can be obtained from some of the preceding ones by an application of one of our rules 

of inf. Instead of chain of inf. I shall also use the term formal proof or briefly proof. A 

proof ending up with the formula F is called a proof for the formula F and of course we 

shall call a formula F provable if there is a proof for it; which means the same thing as: F 

can be obtained from the axioms by iterated application of the rules of inference. A 

symbolism for which  

            5 

axioms and rules of inf. are specified in the manner I have just described is called a 

formal system and the fact to which I referred in the beg. of my talk can now be 

expressed by saying that one has succeeded in reducing all of math. and log. to a formal 

system in such a way that every mathematical proof can be [ ]. Owing to this fact certain 

general questions concerning the structure of math. which formerly had to be left to 



vague speculations (and could not even be stated precisely), have become amenable to 

scientific treatment.  

 The first concerns the freedom from contradiction of math. This question can 

now be stated in a perfectly precise way as follows. “Does there exist any formula A 

such that A and not  (A) are both provable” where the term provable has the meaning 

which I defined before namely it means “obtainable from the axioms by our rules of 

inference in a finite number of steps.” 
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It can easily be shown that if there existed two formulas A and  A, both of which were 

provable, then any formula whatsoever would be provable, for instance also the 

formula 0 = 1. So it is of vital importance for our formalism that this should not happen 

and the problems of giving a proof that it cannot happen arises.  

 But at the same time an objection can be brought against the soundness of this 

problem. Namely one may say: Suppose we had given a proof for consistency then 

owing to the fact that it is a mathematical proof it must necessarily proceed according to 

the axioms and rules of inference for math. and logic. So in order to be convinced by 

this supposed proof we must know that our axioms and rules of inference which we 

used will always lead to correct results. But if we know this in advance then no proof 

for freedom from contradiction is necessary 
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(because rule of inference which lead to correct results cannot lead to A and  A because 

these two formulas cannot both be true).  

 Fortunately the actual situation is slightly different. For mathematics consists of 

two distinct parts which are usually referred to as finite and transfinite math. and which 

may be roughly characterised as follows. Under the first heading (of finite math.) are 

comprised all such methods of proof which do not presuppose the existence of any 

infinite set whereas under the second heading (of transfinite mathematics) fall those 

methods of proof which do presuppose the existence of infinite sets and are based on 

this assumption. (e.g. let P be any arithmetic prop[erty] and let’s consider the statement 

either every integer has the prop. P or there is an integer which has this prop.) 
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 Now nobody has ever questioned seriously the consistency of finite mathematics 

whereas the situation is quite different with the transfinite methods based on the 

assumption of the existence of inf. sets, which by the way is by far the greater part of 

mathematics now existing. In this domain of mathematics actual contradictions had 

arisen unexpectedly by toward the end of the 19. century the so called paradoxes of the 

theory of aggreg[atio]n. In order to avoid them certain restrictions on the previous 

assumptions concerning the existence of infinite sets had to be made. These restrictions 

can be made in a very natural way and they do not affect in any way the mathematical 



results previously obtained, but nevertheless the faith of many math. in the transfinite 

methods 
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was shaken by this bad experience and there remains the fear that other paradoxes may 

arise in spite of the restrictions. 

 Now I think it is clear what the question of proving freedom from contradiction 

really is about. It is the problem of proving the freedom from contradiction of transfinite 

math. by means of finite methods i.e. using in the proof for consistency only such 

methods as are not based on the existence of infinite sets. So much for the meaning of 

the 1. problem, the question of consistency. The second problem is in its treatment so 

closely related to the first that it can hardly be dealt with separately. It is the question of 

completeness of the formal system for math. i.e. the question whether every math. 

statement expressed by a formula of the system can de decided (either in the affirmative 

or in the negative) by means of the rules of inference and axioms i.e. Is it  
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true that if A is any arbitrary formula expressing a prop. then either A or not  A is 

provable? or are there formulas for which neither one of the two is provable? I am going 

to sketch a proof which answers both questions in the negative in the following sense.  

 1.) It is not possible to prove our system consistent, using only a part of the 

method of proof embodied in its axioms and rules of inf. in fact it is not possible to 

prove it consistent using all of its methods of proof  

 2.) There are prop[ositions] in fact even prop. belonging to the [ ] which cannot 

be decided by a formal proof.  

 Of course math. can be formalised in different ways i.e. the ax. and rules of inf. 

representing math. can be chosen in different manners and so one may suspect that our 

two results depend on the special system for math. we choose. But this is not the case. It 

can be shown that  
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the two theorems which I just stated hold good whatever formal system we may choose 

provided only that arithmetic of integers in its usual form is contained in the system 

and that no false arithmetic statement is provable i.e. the axioms and rules of inf. should 

not lead to results which can be disproved for intuitif reasons. 

 The proof for these two statements (imposs. of a proof for consistency and 

existence of undec. prop.) is very cumbersome if worked out in all details but I hope to 

succeed in making the leading ideas clear to you. 

            12 

Suppose system given 

Among expressions also such as x2 > 6 

not prop. but becomes so if subst 

called prop. function 



express properties 

similarly with several variables expressing rel. 

———————————————————— 

Let whatever the prim. symbols be , →, , s5, . . . sn 

Any formula = combination of prim. symbols = sequence 

Therefor numbering possible 

In many ways, we choose the following: 

[number prim symbols . . .    ] 

Proof = sequence of formulas = sequence of numbers 

Numbering of proofs 

Not all numbers used but one to one 

————————————————————— 

Owing to numbering: class of formulas  class of numbers 

   relation          relation     

 

e.g. relation of being longer 

Similarly for any relation (called metamath)  

   relation arithmetic 
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A relation between formulas such as being longer is 

  Analogous to analytical geom. (also statements) 

————————————————————— 

Further examples needed for subs. proof. 

 

Relation of imm. consequence    
𝑃
𝑄.
𝑅

 

 

 means P the formula Q → R (= impl Q as 

 first and R as second term) 

What does that mean for corr. numbers p, q, r 

Series of exp cor. to series of symbols 

therefor series of exp. of p must be comp to those for 

 q and r with one between them 

 purely arithm. relation 

call if for the moment derived 

 for any three numbers it can be ascertained whether or not. 

—————————————————————— 

Arithmetic definition of the integers which are 

numbers of proof as follows: 



Suppose n Axioms with numbers k1 . . .  kn 

 (definite number which can be computed) 

Suppose further only one rule of inf which 

makes no essential difference 
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Recall def. of formal proof (or chain of inference) 

What does that mean for numbers? 

——— 

According to correspondence if n is number of 

proof then exponents numbers of formulas occurring 

in this proof and so the exp must satisfy 

this condition (1.) first – k1 - kn    2. each derived  

from some preceding one where derived means  

——— 

This property again purely arithmetic proof number 

Further we consider the relation y Pr x 

means x Proof and last exp. of x = y 

——— 

and class P(x)  (E y) y Pr x 

——————————————————————————————— 

since the notions P and Pr  are arithmetic and as arith. contain in our system they can be 

exp. by formulas in fact by prop. functions as can be shown in detail. 

——————————————————————————————— 

So consider from now on P and Pr   

as abbreviations for complicated formulas 

which can actually be found and written 
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Rel. y Pr x constructive (finite number of steps) and this has the consequ. 

 

 If A arbitrary formula and a its number 

 If A provable then P(a) provable 

 

Proof sup A provable and b number 

 then b Pr a true and provable 

 hence (Ey) y Pr a = P(a) provable 

————————————————————————————————— 

I need one more arith. notion derived 

from metamat. S(x, y) (calculable) 

——— 



Again can be shown to be arithmetic notion 

which can be calculated (how?) 

——— 

Therefore represented by a formula 

of our System and again consider S 

as denoting this formula 

—————————————————————————————————— 

through with preparations 
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Consider this expression 

 

    P [ S(x, x) ] . . .  q 

 

this is a prop. function with one variable and means: 

 1. formula obtained by subst. x in formula number x is not provable 

 2. The property expressed by prop. function number x cannot be proved to 

belong to the  

  number x - computed 

The above prop. f. being a formula of our system it must have a number q (calculable!) 

Subst q I get a prop. 

   

  

  P [ S(q q) ]  S(q q) 

 

which says that prop. number S(q q) is not provable. What is the number of this formula 

S(q q). 

Lets introduce a for S(q q) then 
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  P(a)⏟  
 

   a 

     A        number 

 

A states on itself that it is not provable or is arithmetic statement equivalent to 

statement A not provable 

——————— 

Now we prove 

If A provable then system contradictory  

Apply auxiliary theorem we have a prop. A with number a and know if A provable  

then P(a) provable so 



  If   P(a) provable then P(a) provable 

  If   P(a) provable system contradictory 

If system consistent A not provable 

But owing to the fact that A itself means exactly that A is not provable we may say  

If system consistent then A i.e. 

 

 C → A 

 

if C means the statement that the system 
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is not provable. 

This statement can itself be expressed by formula owing to correspondence 

So we proved a certain formula of our system C → A and this proof can be formalised 

so we have 

 (C → A) is provable 

 

Now it follows that C cannot be proved because if it were provable then A were 

provable and the system contradictory 
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So we have shown if the statement that out system is free from contradiction could be 

proved then our system would be contradictory and a closer examination shows that 

we could actually exhibit this contradiction i.e. given a proof for freedom of 

contradiction we could derive from it an actual contradiction of our system. The second 

half of our program the proof of the existence of undecidable propositions is now easily 

accomplished e.g. A is such an undecidable prop. For we know if our system is free 

from contradiction then A is not provable.  

            19.1 

The prop. A which we proved to be undecidable is an arithmetic statement because P 

and S of which it is constructed are arithmetic notions. But this prop. A seems at first 

sight to be very artificial and far remote from everything that is actually dealt with in 

arithmetic. This however is a wrong appearance. It can be shown that A can be 

transformed into a statement on the solutions of a certain Diophantine equation, i.e. into 

a statement of the same character as one actually dealt with in number theory 
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Of course the undecidability of A is only relative. We can add a new axiom to our 

system which has the consequence that A becomes decidable in fact a very plausible 

axiom namely C which states that our system is free from contradiction. If we add this 

C, then owing to this implication A becomes provable but it would be wrong to 

suppose that now we should have obtained a system in which every arithmetic 

statement is decidable. For we can apply the same method of proof to our new system 



and construct another prop., which is undecidable in the new system, and so we can go 

on indefinitely without ever reaching a system in which every arithmetic statement is 

decidable. This situation can also be expressed by saying it is impossible to give a 

complete system of axioms for the arithmetic of integers i.e. a system 
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which makes it possible to decide any given arith. statement expressible in the prim. 

terms of our system.  

 I wish to make a final remark on the impossibility of proving consistency. In that 

case too our statement is only relative i.e. we proved only that if a definite formalisation 

of math. is given then it is impossible to prove consistency of that formal system i.e. 

using only the axioms and rules of inf. of this same system. Someone may set up 

another formalism of math. and prove the consistency of the first system by an 

argument proceeding according to the rules of the second system. But we know in a 

proof of consistency the point is that it should be conducted by finite methods and now 

nobody has ever been able to produce a proof conducted by finite methods which could 

not easily be expressed in any one of the 
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formal system for mathematics and nobody knows how to construct such a prove and 

therefore the foregoing considerations make it appear entirely hopeless to prove 

consistency for the transfinite methods of math. using only the unobjectionable methods 

of finite arithmetic which was the program of the formalistic school. 

 

 
 

 


